Affiliation:
1. College of Artificial Intelligence and Big Data, Chongqing Industry Polytechnic College, Chongqing, China
Abstract
With the continuous reform and innovation of Internet technology and the continuous development and progress of social economy, Big Data cloud computing technology is more and more widely used in people’s work and life. Many parallel algorithms play a very important role in solving large linear equations in various applications. To this end, this article aims to propose and summarize a cloud computing task scheduling model that relies on the solution of large linear equations. The method of this paper is to study the technology of solving large-scale linear equations and propose an M-QoS-OCCSM scheduling model. The function of the experimental method is to solve the problem of efficiently executing N mutually dependent parallel tasks within limited resources, while fully satisfying users’ expectations of task completion time, bandwidth rate, reliability, and cost. In this paper, the application experiment of large-scale linear equations in task scheduling is used to study task scheduling algorithms. The results show that when the task load is 10 and 20, the convergence speed of the MPQGA algorithm is 32 seconds and 95 seconds faster than that of the BGA algorithm, respectively.
Funder
Chongqing Yubei District Science and Technology Planning Project
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献