Age-Related Decrease in the Schaffer Collateral-Evoked EPSP in Awake, Freely, Behaving Rats

Author:

Barnes C. A.12,Rao G.1,Orr G.1

Affiliation:

1. Arizona Research Laboratories, Division of Neural Systems, Memory and Aging and the Department of Psychology, University of Arizona, Tucson 85274, AZ, USA

2. Life Science North Building, Rm 384, University of Arizona, Tucson 85749, AZ, USA

Abstract

Synaptic response size in the CA1 region of the hippocampus in aged rats is reduced for a given stimulus intensity, compared with that elicited in young rats. Consistent with the in vitro findings of reduced Schaffer collateral-evoked CA1 EPSPs in old rats, the population currents evoked to iontophoretically applied AMPA are also smaller relative to the presynaptic fiber potential amplitude. On the other hand, the size of the presynaptic fiber potential and amplitude of unitary intra-cellularly recorded EPSP responses do not change across age in the CA1 region. These electrophysiological findings are consistent with the hypothesis that old rats have fewer functional synaptic contacts per Schaffer collateral axon than do young rats. The possibility that this age change arises as a result of a differential tissue recovery response to in vitro preparation was examined in the present study. CA1 presynaptic fiber potential and EPSP amplitudes evoked by the stimulation of Schaffer collateral afferents were studied in intact, freely behaving young and old rats. We confirmed in vivo the pattern of electrophysiophysiological results previously reported in vitro and found significant correlations between the synaptic response amplitudes and the accuracy of spatial behavior in the Morris swim task. The data suggest that changes in functional connectivity of old rats may be a significant contributor to cognitive changes during aging.

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3