Deacidification of endolysosomes by neuronal aging drives synapse loss

Author:

Burrinha Tatiana1ORCID,Cunha César2ORCID,Hall Michael J.1,Lopes‐da‐Silva Mafalda1ORCID,Seabra Miguel C.1ORCID,Guimas Almeida Cláudia1ORCID

Affiliation:

1. iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas Universidade Nova de Lisboa Lisboa Portugal

2. Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

Abstract

AbstractPreviously, we found that age‐dependent accumulation of beta‐amyloid is not sufficient to cause synaptic decline. Late‐endocytic organelles (LEOs) may be driving synaptic decline as lysosomes (Lys) are a target of cellular aging and relevant for synapses. We found that LAMP1‐positive LEOs increased in size and number and accumulated near synapses in aged neurons and brains. LEOs' distal accumulation might relate to the increased anterograde movement in aged neurons. Dissecting the LEOs, we found that late‐endosomes accumulated while there are fewer terminal Lys in aged neurites, but not in the cell body. The most abundant LEOs were degradative Lys or endolysosomes (ELys), especially in neurites. ELys activity was reduced because of acidification defects, supported by the reduction in v‐ATPase subunit V0a1 with aging. Increasing the acidification of aged ELys recovered degradation and reverted synaptic decline, while alkalinization or v‐ATPase inhibition, mimicked age‐dependent Lys and synapse dysfunction. We identify ELys deacidification as a neuronal mechanism of age‐dependent synapse loss. Our findings suggest that future therapeutic strategies to address endolysosomal defects might be able to delay age‐related synaptic decline.

Funder

Alzheimer's Association

Fundação para a Ciência e a Tecnologia

European Regional Development Fund

Publisher

Wiley

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3