Trustworthiness Assessment for Crowdsourcing-Based Citywide Parking Availability Sensing via Connected and Automated Vehicles

Author:

Wang Shiyu1ORCID,Zhao Cong1ORCID,Wang Zekai2ORCID,Shi Yupeng1ORCID,Jiang Shengchuan13ORCID,Du Yuchuan1ORCID

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

2. Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK

3. Department of Traffic Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Real-time status acquisition of parking spaces is highly valuable for an intelligent urban parking system. Crowdsourcing-based parking availability sensing via connected and automated vehicles (CAVs) provides a feasible method with the advantages of high coverage and low cost. However, data trust issues arise from incorrect detection and incomplete information. This paper proposes a trustworthiness assessment method for crowdsourced CAV data considering different impact factors, such as the distance between the CAV and the target parking space, line abrasion, scene complexity, and image sharpness. The crowdsourced CAV data are collected through extensive field experiments and PreScan simulations. The classical line detection algorithm of VPS-Net and the target detection algorithm of YOLO-v3 are applied to detect on-street parking availability. A failure probability model based on the XGBoost algorithm is then developed to establish the relationship between data trustworthiness and different impact factors. The results show that the proposed model has an average accuracy of 78.29% and can effectively assess the degrees of external influences on the trustworthiness of the crowdsourced data. This paper provides a new tool to identify the data quality and improve the sensing accuracy for a crowdsourcing-based parking availability information system.

Funder

Shanghai Sailing Program

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3