Analysis and Optimization of Flute Playing and Teaching System Based on Convolutional Neural Network

Author:

Xu Cong1ORCID

Affiliation:

1. Guizhou Minzu University, Guiyang, Guizhou 550025, China

Abstract

Influenced by cultural background, economic development, social system, education system, and other factors, there is still a big gap between Chinese institutions and developed countries in flute teaching, even with our neighbors, South Korea and Japan. Under the influence of cultural background, economic development, social system, and educational system, there is still a very big gap between Chinese colleges and universities and developed countries in flute teaching, even with our neighbors, South Korea and Japan. Because of its local perception and weight-sharing structure, the convolutional neural network is closer to the biological neural network in the real world. The weight-sharing structure reduces the complexity of the neural network, which can avoid the complexity of feature extraction and classification process in data reconstruction. This paper studies the analysis and optimization of flute playing and teaching system based on a convolutional neural network. By applying local perception field and parameter sharing in a convolutional neural network at the same time and adding multiple filters, it can not only effectively reduce the number of parameters but also extract features layer by layer. In the process of convolution, the parameters of the characteristic map obtained by each layer decrease layer by layer, but the number increases gradually. Based on the analysis of the problems faced by the flute performance teaching, this paper puts forward the corresponding solutions in order to promote the flute performance teaching in China to achieve better results.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3