Prediction of Students’ Performance Based on the Hybrid IDA-SVR Model

Author:

Xu Huan1ORCID

Affiliation:

1. Department of Public Teaching, Hefei Preschool Education College, Hefei 230013, China

Abstract

Students’ performance is an important factor for the evaluation of teaching quality in colleges. The aim of this study is to propose a novel intelligent approach to predict students’ performance using support vector regression (SVR) optimized by an improved duel algorithm (IDA). To the best of our knowledge, few research studies have been developed to predict students’ performance based on student behavior, and the novelty of this study is to develop a new hybrid intelligent approach in this field. According to the obtained results, the IDA-SVR model clearly outperformed the other models by achieving less mean square error (MSE). In other words, IDA-SVR with an MSE of 0.0089 has higher performance than DT with an MSE of 0.0326, SVR with an MSE of 0.0251, ANN with an MSE of 0.0241, and PSO-SVR with an MSE of 0.0117. To investigate the efficacy of IDA, other parameter optimization methods, that is, the direct determination method, grid search method, GA, FA, and PSO, are used for a comparative study. The results show that the IDA algorithm can effectively avoid the local optima and the blindness search and can definitely improve the speed of convergence to the optimal solution.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference26 articles.

1. Prediction of student performance using linear regression;B. Sravani

2. A New Logistic Regression Approach for the Evaluation of Diagnostic Test Results

3. An empirical study of the naive bayes classifier;I. Rish;Journal of Universal Computer Science,2001

4. Induction of decision trees

5. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3