A Hybrid Intelligent System Framework for the Prediction of Heart Disease Using Machine Learning Algorithms

Author:

Haq Amin Ul1ORCID,Li Jian Ping1ORCID,Memon Muhammad Hammad1ORCID,Nazir Shah2ORCID,Sun Ruinan1ORCID

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Department of Computer Science, University of Swabi, Khyber Pakhtunkhwa, Pakistan

Abstract

Heart disease is one of the most critical human diseases in the world and affects human life very badly. In heart disease, the heart is unable to push the required amount of blood to other parts of the body. Accurate and on time diagnosis of heart disease is important for heart failure prevention and treatment. The diagnosis of heart disease through traditional medical history has been considered as not reliable in many aspects. To classify the healthy people and people with heart disease, noninvasive-based methods such as machine learning are reliable and efficient. In the proposed study, we developed a machine-learning-based diagnosis system for heart disease prediction by using heart disease dataset. We used seven popular machine learning algorithms, three feature selection algorithms, the cross-validation method, and seven classifiers performance evaluation metrics such as classification accuracy, specificity, sensitivity, Matthews’ correlation coefficient, and execution time. The proposed system can easily identify and classify people with heart disease from healthy people. Additionally, receiver optimistic curves and area under the curves for each classifier was computed. We have discussed all of the classifiers, feature selection algorithms, preprocessing methods, validation method, and classifiers performance evaluation metrics used in this paper. The performance of the proposed system has been validated on full features and on a reduced set of features. The features reduction has an impact on classifiers performance in terms of accuracy and execution time of classifiers. The proposed machine-learning-based decision support system will assist the doctors to diagnosis heart patients efficiently.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3