Frequency Spectrum-Based Optimal Texture Window Size Selection for High Spatial Resolution Remote Sensing Image Analysis

Author:

Cao Min1ORCID,Ming Dongping12ORCID,Xu Lu1,Fang Ju1ORCID,Liu Lin1,Ling Xiao1,Ma Weizhi3

Affiliation:

1. School of Information Engineering China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian, Beijing, China

2. Polytechnic Center for Natural Resources Big-Data, MNR of China, Beijing 100036, China

3. Beijing Yanqing Municipal Commission of Housing and Urban-Rural Development, 89 Dongwai Avenue, Yanqing, Beijing, China

Abstract

Image texture is an important visual cue in image processing and analysis. Texture feature expression is an important task of geo-objects expression by using a high spatial resolution remote sensing image. Texture features based on gray level co-occurrence matrix (GLCM) are widely used in image spatial analysis where the spatial scale is especially of great significance. Based on the Fourier frequency-spectral analysis, this paper proposes an optimal scale selection method for GLCM. Different subset textures are firstly upscaled by GLCM with different window sizes. Then the multiscale texture feature images are converted into the frequency domain by Fourier transform. Consequently, the radial distribution and angular distribution curves changing with different window sizes from spectrum energy can be achieved, by which the texture window size can be selected. In order to verify the validity of this proposed texture scale selection method, this paper uses high-resolution fusion images to classify land cover based on multiscale texture expression. The results show that the proposed method combining frequency-spectral analysis-based texture scale selection can guarantee the quality and accuracy of the classification, which further proves the effectiveness of optimal texture window size selection method bases on frequency spectrum analysis. Other than scale selection in spatial domain, this paper casts a novel idea for texture scale selection in the frequency domain, which is meant for scale processing of remote sensing image.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3