A New Method for Region-Based Majority Voting CNNs for Very High Resolution Image Classification

Author:

Lv Xianwei,Ming DongpingORCID,Lu Tingting,Zhou Keqi,Wang Min,Bao Hanqing

Abstract

Conventional geographic object-based image analysis (GEOBIA) land cover classification methods by using very high resolution images are hardly applicable due to their complex ground truth and manually selected features, while convolutional neural networks (CNNs) with many hidden layers provide the possibility of extracting deep features from very high resolution images. Compared with pixel-based CNNs, superpixel-based CNN classification, carrying on the idea of GEOBIA, is more efficient. However, superpixel-based CNNs are still problematic in terms of their processing units and accuracies. Firstly, the limitations of salt and pepper errors and low boundary adherence caused by superpixel segmentation still exist; secondly, this method uses the central point of the superpixel as the classification benchmark in identifying the category of the superpixel, which does not allow classification accuracy to be ensured. To solve such problems, this paper proposes a region-based majority voting CNN which combines the idea of GEOBIA and the deep learning technique. Firstly, training data was manually labeled and trained; secondly, images were segmented under multiresolution and the segmented regions were taken as basic processing units; then, point voters were generated within each segmented region and the perceptive fields of points voters were put into the multi-scale CNN to determine their categories. Eventually, the final category of each region was determined in the region majority voting system. The experiments and analyses indicate the following: 1. region-based majority voting CNNs can fully utilize their exclusive nature to extract abstract deep features from images; 2. compared with the pixel-based CNN and superpixel-based CNN, the region-based majority voting CNN is not only efficient but also capable of keeping better segmentation accuracy and boundary fit; 3. to a certain extent, region-based majority voting CNNs reduce the impact of the scale effect upon large objects; and 4. multi-scales containing small scales are more applicable for very high resolution image classification than the single scale.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3