A Green Approach for the Synthesis of Silver Nanoparticles Using Ultrasonic Radiation’s Times in Sodium Alginate Media: Characterization and Antibacterial Evaluation

Author:

Faried Miftah1,Shameli Kamyar12ORCID,Miyake Mikio1,Hajalilou Abdollah1ORCID,Zamanian Ali2,Zakaria Zuriati1,Abouzari-lotf Ebrahim1,Hara Hirofumi1,Ahmad Khairudin Nurul Bahiyah Bt1,Binti Mad Nordin Mariam Firdhaus1

Affiliation:

1. Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

2. Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Alborz, Iran

Abstract

The synthesis of silver nanoparticles (Ag-NPs) was achieved by a simple green chemistry procedure using sodium alginate (Na-Alg) under ultrasonic radiation as a stabilizer and physical reducing agent. The effect of radiation time on the synthesis of Ag-NPs was carried out at room temperature until 720 min. The successful formation of Ag-NPs has been confirmed by UV-Vis, XRD, TEM, FESEM-EDX, zeta potential, and FT-IR analyses. The surface plasmon resonance band appeared at the range of 452–465 nm that is an evidence of formation of Ag-NPs. The XRD study showed that the particles are crystalline structure in nature, with a face-centered cubic (fcc) structure. The TEM study showed the Ag-NPs have average diameters of around 20.16–22.38 nm with spherical shape. The FESEM-EDX analysis confirmed the spherical shape of Ag-NPs on the surface of Alg and the element of Ag with the high purity. The zeta potential showed high stability of Alg/Ag-NPs especially after 720 min irradiation with value of −67.56 mV. The FT-IR spectrum confirmed that the Ag-NPs have been capped by the Alg with van der Waals interaction. The Alg/Ag-NPs showed the antibacterial activity against Gram-positive and Gram-negative bacteria. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3