Design and Development of Parasitic Elements Loaded Quadband Frequency and Pattern Reconfigurable Antenna

Author:

Karthika K.1ORCID,Kavitha K.2ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Kumaraguru College of Technology, Coimbatore, India

2. Department of Electronics and Communication Engineering, Velammal College of Engineering and Technology, Madurai, India

Abstract

Modern communication demands a low-profile, versatile antenna. In this paper, a low-profile antenna of size 38 × 40 × 0.787 m m 3 is proposed to reconfigure frequency and radiation pattern. The Rogers RT Duroid 5870 of dielectric constant 2.33 is used as a substrate. Frequency reconfiguration is achieved by connecting patches of different lengths corresponding to the resonant frequencies through three PIN diode switches. Switching on/off these three diodes results in frequency switching between four distinct frequency bands. The Yagi-Uda principle is utilized to alter the radiation pattern. Simple parasitic elements are loaded on either side of the radiating structure. Changing the electrical lengths of the parasitic elements using PIN diode switches facilitates pattern reconfiguration by making them behave as a reflector/director. The presented structure resonates at four distinct frequencies (5.3 GHz/3.82 GHz/2.77 GHz/2.2 GHz) with a maximum of three beam tilt angles for each resonating frequency. SMP1345-079LF PIN diode is used for switching operation. Biasing circuit has been designed to ensure RF and DC isolation. The proposed antenna offers acceptable radiation performance in all the switching states. The average measured gains are 2.43 dBi, 2.42 dBi, 3.5 dBi, and 3.29 dBi at 5.3 GHz, 3.82 GHz, 2.77 GHz, and 2.2 GHz, respectively. On an average, the proposed antenna exhibits the simulated efficiency of 81%. The proposed antenna is suitable for 5G communication as its bandwidth covers band 1, band 7, band 46, and band 77 of the 5G new radio (NR) standard. Fabrication and testing are done to validate the results.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3