Wideband to concurrent tri-band frequency reconfigurable microstrip patch antenna for wireless communication

Author:

Sharma Sonia,Tripathi Chandra Charu

Abstract

This paper proposes a novel wideband to concurrent tri-band frequency reconfigurable microstrip antenna. The frequency reconfiguration is achieved by using a pair of PIN diodes in the antenna feed line to switch the antenna either in wideband mode or in concurrent tri-band mode. In order to improve the bandwidth and gain of the antenna for wideband operation, the properties of J-K inverter and split ring resonators are exploited. To demonstrate the versatility of this concept a prototype is fabricated and tested here. The tested results in wideband mode shows that the proposed antenna operates from 3.58 to –3.82 GHz, which is 4.08 times larger than the bandwidth of a simple microstrip patch antenna. In the concurrent tri-band mode frequency tuning is done by microstrip open stub at 1.5 GHz, 1.9 GHz, and 3.5 GHz. Gain of the proposed antenna is better than 2.7 dB in wideband mode and 2.7 dB in concurrent tri-band mode.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a Hybrid Frequency and Pattern Reconfigurable Antenna for 5G Sub-6 GHz Applications;2024 IEEE Wireless Antenna and Microwave Symposium (WAMS);2024-02-29

2. Design and Analysis of Wideband Stair Step-Shaped Rectangular Ring Microstrip Antenna with DGS for IoT Applications;International Journal of Online and Biomedical Engineering (iJOE);2023-07-07

3. Design and Development of Parasitic Elements Loaded Quadband Frequency and Pattern Reconfigurable Antenna;International Journal of RF and Microwave Computer-Aided Engineering;2023-05-23

4. A Frequency Reconfigurable Monopole Antenna Diversity for 5G Wireless Communication and IoT Applications;2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM);2022-08-31

5. Machine learning assisted metamaterial-based reconfigurable antenna for low-cost portable electronic devices;Scientific Reports;2022-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3