Data-Driven Optimization Framework for Nonlinear Model Predictive Control

Author:

Zhang Shiliang1ORCID,Cao Hui1ORCID,Zhang Yanbin1ORCID,Jia Lixin1ORCID,Ye Zonglin1,Hei Xiali2

Affiliation:

1. State Key Laboratory of Smart Grid, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

2. Department of Computer and Information Sciences, Delaware State University, Dover, DE 19901, USA

Abstract

The structure of the optimization procedure may affect the control quality of nonlinear model predictive control (MPC). In this paper, a data-driven optimization framework for nonlinear MPC is proposed, where the linguistic model is employed as the prediction model. The linguistic model consists of a series of fuzzy rules, whose antecedents are the membership functions of the input variables and the consequents are the predicted output represented by linear combinations of the input variables. The linear properties of the consequents lead to a quadratic optimization framework without online linearisation, which has analytical solution in the calculation of control sequence. Both the parameters in the antecedents and the consequents are calculated by a hybrid-learning algorithm based on plant data, and the data-driven determination of the parameters leads to an optimization framework with optimized controller parameters, which could provide higher control accuracy. Experiments are conducted in the process control of biochemical continuous sterilization, and the performance of the proposed method is compared with those of the methods of MPC based on linear model, the nonlinear MPC with neural network approximator, and MPC nonlinear with successive linearisations. The experimental results verify that the proposed framework could achieve higher control accuracy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3