Pharmacological Mechanism of Ganlu Powder in the Treatment of NASH Based on Network Pharmacology and Molecular Docking

Author:

Gao Rui1,Zhang Xiaobo1,Zhou Zhen2,Sun Jiayi3,Tang Xuehua4,Li Jialiang1ORCID,Zhou Xin1ORCID,Shen Tao1ORCID

Affiliation:

1. School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China

2. Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia

3. Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China

4. Academic Department, Chengdu Hemoyunyin Medical Laboratory Co., Ltd, China

Abstract

Nonalcoholic steatohepatitis (NASH), a progression of nonalcoholic fatty liver disease (NAFLD), is a clinical syndrome characterized by liver steatosis, inflammation, and hepatocellular damage. Ganlu powder (GLP) is a classic traditional Chinese medicine prescription that has shown favorable treatment effects on NASH. However, the underlying therapeutic mechanisms are still poorly understood. This study is aimed at exploring the potential mechanism of GLP in the treatment of NASH via network pharmacology and molecular docking. PubMed and CNKI databases were used to identify the components of GLP. Swiss and STITCH databases were employed to obtain corresponding drug targets. NASH targets were adopted from the Therapeutic Target Database (TTD), DisGeNET, DrugBank, GeneCards, and MalaCards databases. Cytoscape software was utilized to construct “drug-ingredient-target-disease” networks and the protein-protein interaction (PPI) network of GLP in NASH. AKT1 was identified as the key target. The GO functional enrichment analysis revealed that GLP might treat NASH by modulating the inflammatory response and regulating phosphatidylinositol 3-kinase signaling. The KEGG analysis showed that GLP might treat NASH by regulating the tumor necrosis factor (TNF) signal pathway by affecting the role of AKT1. According to the network pharmacology results, a virtual docking of active compounds with AKT1 was carried out, and the results indicated that the 7 components, berberine, epiberberine, jatrorrhizine, coptisine, palmatine, evodiamine, and rutecarpine, can bind stably with AKT1 and have higher binding energy than AKT1 inhibitors. The overall study findings suggest that GLP may treat NASH by regulating AKT1.

Funder

Sichuan Science and Technology Innovation Seedling Project

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3