Network Pharmacology and Molecular Docking Integrated with Molecular Dynamics Simulations Investigate the Pharmacological Mechanism of Yinchenhao Decoction in the Treatment of Non-alcoholic Fatty Liver Disease

Author:

Yang Rong12,Jiang Dansheng3,Xu Hongling2,Yang Huili2,Feng Lian12,Wu Qibiao1,Xing Yufeng12

Affiliation:

1. Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China

2. Department of Liver Diseases, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China

3. Department of Paediatrics, Puning Traditional Chinese Medicine Hospital, Puning, China

Abstract

Background: Non-Alcoholic Fatty Liver Disease (NAFLD) has become a significant health and economic burden globally. Yinchenhao decoction (YCHD) is a traditional Chinese medicine formula that has been validated to exert therapeutic effects on NAFLD. Object: The current study aimed to explore the pharmacological mechanisms of YCHD on NAFLD and further identify the potential active compounds acting on the main targets. Methods: Compounds in YCHD were screened and collected from TCMSP and published studies, and their corresponding targets were obtained from the SWISS and SEA databases. NAFLD-related targets were searched in the GeneCards and DisGeNet databases. The “compound- intersection target” network was constructed to recognize the key compounds. Moreover, a PPI network was constructed to identify potential targets. GO and KEGG analyses were performed to enrich the functional information of the intersection targets. Then, molecular docking was used to identify the most promising compounds and targets. Finally, molecular dynamics (MD) simulations were performed to verify the binding affinity of the most potential compounds with the key targets. Results: A total of 53 compounds and 556 corresponding drug targets were collected. Moreover, 2684 NAFLD-related targets were obtained, and 201 intersection targets were identified. Biological processes, including the apoptotic process, inflammatory response, xenobiotic metabolic process, and regulation of MAP kinase activity, were closely related to the treatment of NAFLD. Metabolic pathways, non-alcoholic fatty liver disease, the MAPK signaling pathway, and the PI3K-Akt signaling pathway were found to be the key pathways. Molecular docking showed that quercetin and isorhamnetin were the potential active compounds, while AKT1, IL1B, and PPARG were the most promising targets. MD simulations further verified that the binding of PPARG-isorhamnetin (-35.96 ± 1.64 kcal/mol) and AKT1-quercetin (-31.47 ± 1.49 kcal/mol) was due to their lowest binding free energy. Conclusion: This study demonstrated that YCHD exerts therapeutic effects for the treatment of NAFLD through multiple targets and pathways, providing a theoretical basis for further pharmacological research on the potential mechanisms of YCHD in NAFLD.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3