Electron Paramagnetic Resonance Examination of Free Radical Formation in Salicylic Acid and Urea Exposed to UV Irradiation

Author:

Ramos Paweł1,Pilawa Barbara1

Affiliation:

1. School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Department of Biophysics, Jedności 8, 41-200 Sosnowiec, Poland

Abstract

Free radicals formed by UV irradiation of the two magistral formulas applied on the skin, salicylic acid and urea, were examined by X-band (9.3 GHz) EPR spectroscopy. The influence of the time of UVA (315–400 nm) irradiation on free radical properties and concentrations in the drug samples was determined. The nonirradiated magistral formula did not contain free radicals. Amplitudes (A) and linewidths (ΔBpp) of EPR spectra were analysed. Fast spin-lattice relaxation process existed in the tested drugs. UV irradiation did not change spin-lattice interactions in the tested magistral formula. Concentrations of free radicals formed by UV irradiation in salicylic acid and urea were ~1017–1018 spins/g. The strongest formation of free radicals under UV irradiation was observed for salicylic acid than for urea. Free radical concentration in salicylic acid increased with the increase of UV irradiation time from 15 minutes to 30 minutes, and after its value remained unchanged. The increase of free radical concentration in urea with UV irradiation time was stated. Salicylic acid is characterized with higher photosensitivity than urea. Salicylic acid, urea, and the skin treated by them should not be stored on UV exposure. The usefulness of EPR spectroscopy to optimize storage conditions of recipe drugs was conformed.

Funder

Medical University of Silesia in Katowice

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3