Affiliation:
1. National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, China
2. Hubei Research Center for Educational Informationization, Central China Normal University, Wuhan 430079, China
Abstract
Recently, several shapelet-based methods have been proposed for time series classification, which are accomplished by identifying the most discriminating subsequence. However, for time series datasets in some application domains, pattern recognition on the original time series cannot always obtain ideal results. To address this issue, we propose an ensemble algorithm by combining time frequency analysis and shape similarity recognition of time series. Discrete wavelet transform is used to decompose the time series into different components, and the shapelet features are identified for each component. According to the different correlations between each component and the original time series, an ensemble classifier is built by weighted majority voting, and the Monte Carlo method is used to search for optimal weight vector. The comparative experiments and sensitivity analysis are conducted on 25 datasets from UCR Time Series Classification Archive, which is an important open dataset resource in time series mining. The results show the proposed method has a better performance in terms of accuracy and stability than the compared classifiers.
Funder
Central China Normal University
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献