Automated Detection of Sudden Cardiac Death by Discrete Wavelet Transform of Electrocardiogram Signal

Author:

Shi Manhong,Yu Hongjie,Wang Hongjie

Abstract

Sudden cardiac death (SCD) results in millions of deaths annually; as it is a fatal heart abnormality, early prediction of SCD could save peoples’ lives to the greatest extent. Symmetry and asymmetry play an important role in many fields. Electrocardiograms (ECG) as a noninvasive process for acquiring the electrical activity of the heart, has both asymmetric and non-stationary characteristics; it is frequently employed to diagnose and evaluate the heart’s condition. In this work, we have detected SCD 14 min (separately for each one-minute interval) prior to its occurrence by analyzing ECG signals using discrete wavelet transform (DWT) and locality preserving projection (LPP). In the experiment, we have performed DWT on ECG signals to obtain coefficients, then LPP as a reduction methodology was used to cut down these obtained coefficients. Then, the acquired LPP features were ranked using various methods, including the T-test, Bhattacharyya, Wilcoxon, and entropy. At last, the highly ranked LPP features were subjected to decision tree, k-nearest neighbor (KNN), and support vector machine classifiers for distinguishing normal from SCD ECG signals. Our proposed technique has achieved a highest accuracy of 97.6% for the detection of SCD 14 min prior using the KNN classifier, compared to the existing works. Our proposed method is capable of predicting the people at risk of developing SCD 14 min before its onset, and, hence, clinicians would have enough time to provide treatment in intensive care units (ICU) for a subject at risk of SCD. Thus, this proposed technique as a useful tool can increase the survival rate of many cardiac patients.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3