Author:
Shi Manhong,Yu Hongjie,Wang Hongjie
Abstract
Sudden cardiac death (SCD) results in millions of deaths annually; as it is a fatal heart abnormality, early prediction of SCD could save peoples’ lives to the greatest extent. Symmetry and asymmetry play an important role in many fields. Electrocardiograms (ECG) as a noninvasive process for acquiring the electrical activity of the heart, has both asymmetric and non-stationary characteristics; it is frequently employed to diagnose and evaluate the heart’s condition. In this work, we have detected SCD 14 min (separately for each one-minute interval) prior to its occurrence by analyzing ECG signals using discrete wavelet transform (DWT) and locality preserving projection (LPP). In the experiment, we have performed DWT on ECG signals to obtain coefficients, then LPP as a reduction methodology was used to cut down these obtained coefficients. Then, the acquired LPP features were ranked using various methods, including the T-test, Bhattacharyya, Wilcoxon, and entropy. At last, the highly ranked LPP features were subjected to decision tree, k-nearest neighbor (KNN), and support vector machine classifiers for distinguishing normal from SCD ECG signals. Our proposed technique has achieved a highest accuracy of 97.6% for the detection of SCD 14 min prior using the KNN classifier, compared to the existing works. Our proposed method is capable of predicting the people at risk of developing SCD 14 min before its onset, and, hence, clinicians would have enough time to provide treatment in intensive care units (ICU) for a subject at risk of SCD. Thus, this proposed technique as a useful tool can increase the survival rate of many cardiac patients.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献