Privacy-Oriented Successive Approximation Image Position Follower Processing

Author:

Miao Ying1ORCID,Shao Danyang23ORCID,Yan Zhimin23ORCID

Affiliation:

1. School of Economics and Management, Shenyang Aerospace University, Shenyang, Liaoning 110136, China

2. SLZY (Shenyang) Hi-Tech Co., Ltd., Shenfu Reform and Innovation Demonstration Zone, Shenyang, Liaoning 110172, China

3. UAV Division of Liaoning ITRI, Shenfu Reform and Innovation Demonstration Zone, Shenyang, Liaoning 110172, China

Abstract

In this paper, we analyze the location-following processing of the image by successive approximation with the need for directed privacy. To solve the detection problem of moving the human body in the dynamic background, the motion target detection module integrates the two ideas of feature information detection and human body model segmentation detection and combines the deep learning framework to complete the detection of the human body by detecting the feature points of key parts of the human body. The detection of human key points depends on the human pose estimation algorithm, so the research in this paper is based on the bottom-up model in the multiperson pose estimation method; firstly, all the human key points in the image are detected by feature extraction through the convolutional neural network, and then the accurate labelling of human key points is achieved by using the heat map and offset fusion optimization method in the feature point confidence map prediction, and finally, the human body detection results are obtained. In the study of the correlation algorithm, this paper combines the HOG feature extraction of the KCF algorithm and the scale filter of the DSST algorithm to form a fusion correlation filter based on the principle study of the MOSSE correlation filter. The algorithm solves the problems of lack of scale estimation of KCF algorithm and low real-time rate of DSST algorithm and improves the tracking accuracy while ensuring the real-time performance of the algorithm.

Funder

Science Technology Major Project of Liaoning Province China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3