A Machine Learning Approach to Assess Differential Item Functioning in Psychometric Questionnaires Using the Elastic Net Regularized Ordinal Logistic Regression in Small Sample Size Groups

Author:

Ebrahimi Vahid1ORCID,Bagheri Zahra1ORCID,Shayan Zahra1ORCID,Jafari Peyman1ORCID

Affiliation:

1. Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Assessing differential item functioning (DIF) using the ordinal logistic regression (OLR) model highly depends on the asymptotic sampling distribution of the maximum likelihood (ML) estimators. The ML estimation method, which is often used to estimate the parameters of the OLR model for DIF detection, may be substantially biased with small samples. This study is aimed at proposing a new application of the elastic net regularized OLR model, as a special type of machine learning method, for assessing DIF between two groups with small samples. Accordingly, a simulation study was conducted to compare the powers and type I error rates of the regularized and nonregularized OLR models in detecting DIF under various conditions including moderate and severe magnitudes of DIF ( DIF = 0.4 and 0.8 ), sample size ( N ), sample size ratio ( R ), scale length ( I ), and weighting parameter ( w ). The simulation results revealed that for I = 5 and regardless of R , the elastic net regularized OLR model with w = 0.1 , as compared with the nonregularized OLR model, increased the power of detecting moderate uniform DIF ( DIF = 0.4 ) approximately 35% and 21% for N = 100 and 150 , respectively. Moreover, for I = 10 and severe uniform DIF ( DIF = 0.8 ), the average power of the elastic net regularized OLR model with 0.03 w 0.06 , as compared with the nonregularized OLR model, increased approximately 29.3% and 11.2% for N = 100 and 150 , respectively. In these cases, the type I error rates of the regularized and nonregularized OLR models were below or close to the nominal level of 0.05. In general, this simulation study showed that the elastic net regularized OLR model outperformed the nonregularized OLR model especially in extremely small sample size groups. Furthermore, the present research provided a guideline and some recommendations for researchers who conduct DIF studies with small sample sizes.

Funder

Shiraz University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3