Affiliation:
1. Chongqing Technology and Business University, Chongqing, China
2. Assumption University, Bangkok, Thailand
3. Chongqing Normal University, Chongqing, China
Abstract
Using the traditional English teaching mode is difficult to help correct students, and it is difficult to achieve human-computer interaction in oral English communication. In order to improve the effect of English detection and improve teaching efficiency, this article builds an artificial intelligence-assisted teaching system suitable for English teaching based on heuristic genetic algorithms. Furthermore, this article extends the multioffspring genetic algorithm, improves the offspring generation method, and proposes GMOGA, which makes the choice of the number of offspring more flexible. At the same time, it also enables the value of the number of children of the algorithm to be a value that cannot be obtained by the previous algorithm, which further improves the efficiency of the algorithm. In addition, this article combines the actual needs to construct the functional structure of the artificial intelligence system and designs two sets of comparative experiments to verify and analyze the model’s performance. The research results show that the model constructed in this article meets the multifunctional requirements of the system and can be applied to practice.
Funder
Ministry of Education of the People's Republic of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献