Hybrid Machine Learning and Modified Teaching Learning-Based English Optimization Algorithm for Smart City Communication

Author:

Liu Xing1,Zhang Xiaojing1,Baziar Aliasghar2

Affiliation:

1. School of Foreign Languages, Sichuan Normal University, Chengdu 610101, China

2. Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht 73711, Iran

Abstract

This paper introduces a hybrid algorithm that combines machine learning and modified teaching learning-based optimization (TLBO) for enhancing smart city communication and energy management. The primary objective is to optimize the modified systems, which face challenges due to their high population density. The proposed algorithm integrates the strengths of machine learning techniques, more specifically, the long short-term memory (LSTM) technique, with teaching learning-based optimization algorithms. To achieve optimization, the algorithm learns from historical data on energy consumption and communication patterns specific to the modeled system. By leveraging these insights, it can predict future energy consumption and communication patterns accurately. Additionally, the algorithm incorporates a modified teaching learning-based optimization approach inspired by the teaching and learning process in classrooms. It adjusts the system parameters based on feedback received from the system, thereby optimizing both energy consumption and communication systems. The effectiveness of the proposed algorithm is evaluated through a case study conducted on the test system, where historical data on energy consumption and communication patterns are analyzed. The results demonstrate that the algorithm efficiently optimizes the communication and energy management systems, leading to substantial energy savings and improved communication efficiency within the test system. In conclusion, this study presents a hybrid machine learning and modified teaching learning-based optimization algorithm that effectively addresses the communication and energy management challenges in the test system. Moreover, this algorithm holds the potential for application in various smart city domains beyond the test system. The findings of this research contribute to the advancement of smart city technologies and offer valuable insights into reducing energy consumption in densely populated urban areas.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3