Incorporating Research Reports and Market Sentiment for Stock Excess Return Prediction: A Case of Mainland China

Author:

Song Huilin1,Peng Diyun2,Huang Xin3ORCID

Affiliation:

1. School of Management, Nanchang University, Nanchang 330031, China

2. School of Economics Management, Nanchang University, Nanchang 330031, China

3. School of Software, Jiangxi Normal University, Nanchang 330031, China

Abstract

The prediction of stock excess returns is an important research topic for quantitative trading, and stock price prediction based on machine learning is receiving more and more attention. This article takes the data of Chinese A-shares from July 2014 to September 2017 as the research object, and proposes a method of stock excess return forecasting that combines research reports and investor sentiment. The proposed method measures individual stocks released by analysts, separates the two indicators of research report attention and rating sentiment, calculates investor sentiment based on external market factors, and uses the LSTM model to represent the time series characteristics of stocks. The results show that (1) the accuracy and F1 evaluation indicators are used, and the proposed algorithm is better than the benchmark algorithm. (2) The performance of deep learning LSTM algorithm is better than traditional machine learning algorithm SVM. (3) Investor sentiment as the initial hidden state of the model can improve the accuracy of the algorithm. (4) The attention of the split research report takes the two indicators of investor sentiment and price as the input of the model, which can effectively improve the performance of the model.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3