Stock Price Forecast Based on CNN-BiLSTM-ECA Model

Author:

Chen Yu1ORCID,Fang Ruixin1ORCID,Liang Ting1ORCID,Sha Zongyu1ORCID,Li Shicheng1ORCID,Yi Yugen1ORCID,Zhou Wei2ORCID,Song Huilin3ORCID

Affiliation:

1. School of Software, Jiangxi Normal University, Nanchang 330022, China

2. School of Computer, Shenyang Aerospace University, Shenyang 110136, China

3. School of International Economics and Trade, Jiangxi University of Finance and Economics, Nanchang 330022, China

Abstract

Financial data as a kind of multimedia data contains rich information, which has been widely used for data analysis task. However, how to predict the stock price is still a hot research problem for investors and researchers in financial field. Forecasting stock prices becomes an extremely challenging task due to high noise, nonlinearity, and volatility of the stock price time series data. In order to provide better prediction results of stock price, a new stock price prediction model named as CNN-BiLSTM-ECA is proposed, which combines Convolutional Neural Network (CNN), Bidirectional Long Short-term Memory (BiLSTM) network, and Attention Mechanism (AM). More specifically, CNN is utilized to extract the deep features of stock data for reducing the influence of high noise and nonlinearity. Then, BiLSTM network is employed to predict the stock price based on the extracted deep features. Meanwhile, a novel Efficient Channel Attention (ECA) module is introduced into the network model to further improve the sensitivity of the network to the important features and key information. Finally, extensive experiments are conducted on the three stock datasets such as Shanghai Composite Index, China Unicom, and CSI 300. Compared with the existing methods, the experimental results verify the effectiveness and feasibility of the proposed CNN-BILSTM-ECA network model, which can provide an important reference for investors to make decisions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3