Modulation of Astrocytes on Mode Selection of Neuron Firing Driven by Electromagnetic Induction

Author:

Gao Zhongquan1,Yuan Zhixuan2,Wang Zuo1,Feng Peihua2ORCID

Affiliation:

1. School of Power and Energy Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

2. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Both of astrocytes and electromagnetic induction are magnificent to modulate neuron firing by introducing feedback currents to membrane potential. An improved astro-neuron model considering both of the two factors is employed to investigate their different roles in modulation. The mixing mode, defined by combination of period bursting and depolarization blockage, characterizes the effect of astrocytes. Mixing mode and period bursting alternatively appear in parameter space with respect to the amplitude of feedback current on neuron from astrocyte modulation. However, magnetic flux obviously plays a role of neuron firing inhibition. It not only repels the mixing mode but also suppresses period bursting. The mixing mode becomes period bursting mode and even resting state when astrocytes are hyperexcitable. Abnormal activities of astrocytes are capable to induce depolarization blockage to compose the mixing mode together with bursting mode. But electromagnetic induction shows its strong ability of inhibition of neuron firing, which is also illustrated in the bifurcation diagram. Indeed, the combination of the two factors and appropriate choice of parameters show the great potential to control disorder of neuron firing like epilepsy.

Funder

Youth program of National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3