Mixture Design Study of Fiber-Reinforced Self-Compacting Concrete for Prefabricated Street Light Post Structures

Author:

Zatar Wael1,Nguyen Tu2ORCID

Affiliation:

1. College of Engineering and Computer Sciences, Marshall University, Huntington, WV 25755, USA

2. Marshall University Research Corporation, Marshall University, Huntington, WV 25755, USA

Abstract

In recent years, there has been an increasing demand to produce strong precast street light posts that are aesthetically pleasing. This study presents experimental results of a considerable number of mixture designs for fabricating precast street light posts where fiber-reinforced self-compacting concrete (FRSCC) was employed. The performance of many FRSCC mixtures was evaluated in terms of their structural properties and aesthetic characteristics. A trial-and-error procedure was performed for a series of FRSCC mixtures where silica fume, fly ash, and fibers were used. Slump flow and air content tests were conducted to determine the fresh FRSCC properties, and specimens were cast to evaluate their aesthetic. Three-day and seven-day compression tests were performed to examine the FRSCC hardened properties. The amount of cement in all batches was kept constant, whereas the distributions of fine and coarse aggregates, water, and other admixtures were adjusted. The largest slump flow of 73.7 cm (29 in) was recorded, and the maximum three-day compressive strength was 43 MPa (6209 psi). Further refinement of the mixtures, which displayed the best strength and aesthetic attributes, was performed. Test results of the selected FRSCC mixtures indicated an excellent slump flow, air content, and compression values while achieving advantageous aesthetic qualities. Seven-day compressive strength of 39 MPa (5686 psi) with the air content of 4.8 percent and the slump flow of 66 cm (26 in) was recorded. The study results and the developed FRSCC mixes can be used for mass production of precast concrete street light posts in precast plants.

Funder

West Virginia Department of Transportation

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference35 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3