Towards Innovative and Sustainable Construction of Architectural Structures by Employing Self-Consolidating Concrete Reinforced with Polypropylene Fibers

Author:

Zatar Wael,Nguyen Hai

Abstract

Self-consolidating concrete (SCC) has been successfully employed to reduce construction time and enhance the quality, performance, and esthetic appearance of concrete structures. This research aimed at developing environmentally friendly fiber-reinforced concrete (FRC) consisting of SCC and recycled polypropylene (PP) fibers for sustainable construction of city buildings and transportation infrastructure. The addition of the PP fibers to SCC helps reducing shrinkage cracks and providing enhanced mechanical properties, durability, and ductility of the concrete materials. Several mix designs of self-consolidating fiber-reinforced concrete (SCFRC) were experimentally examined. Material and esthetic properties of the SCFRC mixtures that include micro silica, fly ash, and PP fibers were evaluated. Trial-and-adjustment method was employed to obtain practically optimum SCFRC mixtures, mixtures that are affordable and easy to make possessing enhanced compressive strength and esthetic properties. Slump flow and air content testing methods were used to determine the fresh properties of the SCFRC mixtures, and the esthetic properties of the mixtures were also evaluated. The hardened properties of the SCFRC mixtures were examined using three- and seven-day compression tests. The amount of fine/coarse aggregate, water, and other admixtures were varied while the Portland cement content in all mixtures was maintained unchanged. The maximum three-day compressive strength was 43.17 MPa and the largest slump flow was 736.6 mm. Test results showed enhanced material properties such as slump flow, air content and compressive strength values of the SCFRC mixtures and their excellent esthetic appearance. The favorable seven-day compressive strength of the SCFRC mixture, with 4.8 percent air content and 660.4 mm slump flow, is 39.26 MPa. The mixtures’ in this study are proven to be advantageous for potential SCFRC applications in architectural structures including building façades and esthetically-pleasing bridges.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3