Affiliation:
1. Key Laboratory of Spatio-Temporal Information and Ecological Restoration of Mines(MNR), Henan Polytechnic University, Jiaozuo, Henan 454003, China
2. School of Surveying and Mapping Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003 Henan, China
3. Collaborative Innovation Center of Aerospace Remote Sensing Information Processing and Application of Hebei Province, 065000 Langfang, China
4. Jiangsu Province Engineering Investigation and Research Institute Co. Ltd., Yangzhou, Jiangsu 225001, China
Abstract
Accurate and timely collection of urban land use and land cover information is crucial for many aspects of urban development and environment protection. Very high-resolution (VHR) remote sensing images have made it possible to detect and distinguish detailed information on the ground. While abundant texture information and limited spectral channels of VHR images will lead to the increase of intraclass variance and the decrease of the interclass variance. Substantial studies on pixel-based classification algorithms revealed that there were some limitations on land cover information extraction with VHR remote sensing imagery when applying the conventional pixel-based classifiers. Aiming at evaluating the advantages of classifier ensemble strategies and object-based image analysis (OBIA) method for VHR satellite data classification under complex urban area, we present an approach-integrated multiscale segmentation OBIA and a mature classifier ensemble method named random forest. The framework was tested on Chinese GaoFen-1 (GF-1), and GF-2 VHR remotely sensed data over the central business district (CBD) of Zhengzhou metropolitan. Process flow of the proposed framework including data fusion, multiscale image segmentation, best optimal segmentation scale evaluation, multivariance texture feature extraction, random forest ensemble learning classifier construction, accuracy assessment, and time consumption. Advantages of the proposed framework were compared and discussed with several mature state-of-art machine learning algorithms such as the
-nearest neighbor (KNN), support vector machine (SVM), and decision tree classifier (DTC). Experimental results showed that the OA of the proposed method is up to 99.29% and 98.98% for the GF-1 dataset and GF-2 dataset, respectively. And the OA is increased by 26.89%, 11.79%, 11.89%, and 4.26% compared with the traditional machine learning algorithms such as the decision tree classifier (DTC), support vector machine (SVM),
-nearest neighbor (KNN), and random forest (RF) on the test of the GF-1 dataset; OA increased by 32.31%, 13.48%, 9.77%, and 7.72% for the GF-2 dataset. In terms of time consuming, by rough statistic, OBIA-RF spends 223.55 s, SVM spends 403.57 s, KNN spends 86.93 s, and DT spends 0.61 s on average of the GF-1 and GF-2 datasets. Taking the account classification accuracy and running time, the proposed method has good ability of generalization and robustness for complex urban surface classification with high-resolution remotely sensed data.
Funder
Henan Key Technology R&D Projects
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献