Advantage of Combining OBIA and Classifier Ensemble Method for Very High-Resolution Satellite Imagery Classification

Author:

Han Ruimei12,Liu Pei123ORCID,Wang Guangyan4,Zhang Hanwei12,Wu Xilong1

Affiliation:

1. Key Laboratory of Spatio-Temporal Information and Ecological Restoration of Mines(MNR), Henan Polytechnic University, Jiaozuo, Henan 454003, China

2. School of Surveying and Mapping Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003 Henan, China

3. Collaborative Innovation Center of Aerospace Remote Sensing Information Processing and Application of Hebei Province, 065000 Langfang, China

4. Jiangsu Province Engineering Investigation and Research Institute Co. Ltd., Yangzhou, Jiangsu 225001, China

Abstract

Accurate and timely collection of urban land use and land cover information is crucial for many aspects of urban development and environment protection. Very high-resolution (VHR) remote sensing images have made it possible to detect and distinguish detailed information on the ground. While abundant texture information and limited spectral channels of VHR images will lead to the increase of intraclass variance and the decrease of the interclass variance. Substantial studies on pixel-based classification algorithms revealed that there were some limitations on land cover information extraction with VHR remote sensing imagery when applying the conventional pixel-based classifiers. Aiming at evaluating the advantages of classifier ensemble strategies and object-based image analysis (OBIA) method for VHR satellite data classification under complex urban area, we present an approach-integrated multiscale segmentation OBIA and a mature classifier ensemble method named random forest. The framework was tested on Chinese GaoFen-1 (GF-1), and GF-2 VHR remotely sensed data over the central business district (CBD) of Zhengzhou metropolitan. Process flow of the proposed framework including data fusion, multiscale image segmentation, best optimal segmentation scale evaluation, multivariance texture feature extraction, random forest ensemble learning classifier construction, accuracy assessment, and time consumption. Advantages of the proposed framework were compared and discussed with several mature state-of-art machine learning algorithms such as the k -nearest neighbor (KNN), support vector machine (SVM), and decision tree classifier (DTC). Experimental results showed that the OA of the proposed method is up to 99.29% and 98.98% for the GF-1 dataset and GF-2 dataset, respectively. And the OA is increased by 26.89%, 11.79%, 11.89%, and 4.26% compared with the traditional machine learning algorithms such as the decision tree classifier (DTC), support vector machine (SVM), k -nearest neighbor (KNN), and random forest (RF) on the test of the GF-1 dataset; OA increased by 32.31%, 13.48%, 9.77%, and 7.72% for the GF-2 dataset. In terms of time consuming, by rough statistic, OBIA-RF spends 223.55 s, SVM spends 403.57 s, KNN spends 86.93 s, and DT spends 0.61 s on average of the GF-1 and GF-2 datasets. Taking the account classification accuracy and running time, the proposed method has good ability of generalization and robustness for complex urban surface classification with high-resolution remotely sensed data.

Funder

Henan Key Technology R&D Projects

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3