Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem

Author:

Vasilakos ChristosORCID,Kavroudakis DimitrisORCID,Georganta Aikaterini

Abstract

Land cover type classification still remains an active research topic while new sensors and methods become available. Applications such as environmental monitoring, natural resource management, and change detection require more accurate, detailed, and constantly updated land-cover type mapping. These needs are fulfilled by newer sensors with high spatial and spectral resolution along with modern data processing algorithms. Sentinel-2 sensor provides data with high spatial, spectral, and temporal resolution for the in classification of highly fragmented landscape. This study applies six traditional data classifiers and nine ensemble methods on multitemporal Sentinel-2 image datasets for identifying land cover types in the heterogeneous Mediterranean landscape of Lesvos Island, Greece. Support vector machine, random forest, artificial neural network, decision tree, linear discriminant analysis, and k-nearest neighbor classifiers are applied and compared with nine ensemble classifiers on the basis of different voting methods. kappa statistic, F1-score, and Matthews correlation coefficient metrics were used in the assembly of the voting methods. Support vector machine outperformed the base classifiers with kappa of 0.91. Support vector machine also outperformed the ensemble classifiers in an unseen dataset. Five voting methods performed better than the rest of the classifiers. A diversity study based on four different metrics revealed that an ensemble can be avoided if a base classifier shows an identifiable superiority. Therefore, ensemble approaches should include a careful selection of base-classifiers based on a diversity analysis.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3