Affiliation:
1. School of Energy and Mining Engineering, China University of Mining & Technology (Beijing), Beijing, China
2. Department of Civil and Architectural Engineering, Shanxi Institute of Technology, Yangquan, China
Abstract
Aiming at the floor heave of transportation concentrated roadway on the West Wing (TCRWW) of No. 1 Coal Seam in Danhou Mine, it affects underground coal transportation and mine safety production. First, the lithology and structure of the roadway floor were sampled and tested, and it was found that it contained clay minerals with high hydrophilicity. Secondly, starting from the mechanical mechanism of the roadway floor, a mechanical model of the roadway floor is established. By increasing the floor anchoring layer thickness m1, the floor deformation can be effectively controlled to guarantee the stability of the surrounding rock of the roadway. Thirdly, the FLAC3D numerical simulation analysis of the roadway deformation under the existing support scheme of the roadway is consistent with the measured deformation results on-site, thereby revealing that the existing support scheme and parameters are not reasonable. Finally, the unreasonable support scheme and parameters of the existing roadway were disclosed, and an antifloor arch structure was proposed: “quicklime bottom paving + prestressed anchor cable + concrete arc beam + metal mesh + C20 high-strength concrete filling.” This floor treatment plan is adopted for the industrial verification of the test section of TCRWW. Engineering practice shows that the optimized roadway support scheme has a better effect on the deformation control of the roof-to-floor and rib-to-rib, thereby effectively ensuring safe and efficient production in the mine.
Funder
National Natural Science Foundation of China
Subject
Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献