Insights on Climate-Driven Fluctuations of Cave 222Rn and CO2 Concentrations Using Statistical and Wavelet Analyses

Author:

Pla Concepcion1ORCID,Fernandez-Cortes Angel2,Cuezva Soledad3,Galiana-Merino Juan Jose4,Cañaveras Juan Carlos5,Sanchez-Moral Sergio6,Benavente David5

Affiliation:

1. Department of Civil Engineering, University of Alicante, 03690, Spain

2. Department of Biology and Geology, University of Almeria, 04120, Spain

3. Department of Biology, University of Antwerp, 2610, Belgium

4. Department of Physics, Systems Engineering and Signal Theory, University of Alicante, 03690, Spain

5. Department of Earth and Environmental Sciences, University of Alicante, 03690, Spain

6. Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006, Spain

Abstract

Understanding the fluctuations in cave air concentrations and their climatic control is substantial not only to preserve the quality of indoor atmospheres but also to avoid the risk related to the presence of hazardous substances. In this study, we investigated the most influential factors affecting 222Rn and CO2 concentrations, the nature of their dynamics, and their coupling with climatic variations. For this purpose, we combined a set of mathematical methods that included a statistical and wavelet analysis of a 6-year time series in Rull Cave (Spain). Generally, the 222Rn and CO2 dynamic in cave air showed similar patterns. However, the obtained results show that these gases have a different frequency response. Thus, the annual component of 222Rn and CO2 is controlled by the relationship between external and internal temperatures. At low frequencies, both gases are affected by the same variables when the cave atmosphere reaches a minimum concentration. However, when the cave atmosphere is isolated from the outdoors, 222Rn and CO2 behave differently and disturbance caused by the visitors is evidenced in terms of the CO2 concentration; the latter observation was confirmed by the wavelet analysis at high frequencies. In contrast, the 222Rn concentration shows important variations following rainfall, which was weakly identified in the CO2 concentration.

Funder

University of Alicante

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3