Assessing current and future available resources to supply urban water demands using a high-resolution SWAT model coupled with recurrent neural networks and validated through the SIMPA model in karstic Mediterranean environments

Author:

Jodar-Abellan Antonio,Pardo Miguel Ángel,Asadollah Seyed Babak Haji Seyed,Bailey Ryan T.

Abstract

AbstractHydrological simulation in karstic areas is a hard task due to the intrinsic intricacy of these environments and the common lack of data related to their geometry. Hydrological dynamics of karstic sites in Mediterranean semiarid regions are difficult to be modelled mathematically owing to the existence of short wet episodes and long dry periods. In this paper, the suitability of an open-source SWAT method was checked to estimate the comportment of a karstic catchment in a Mediterranean semiarid domain (southeast of Spain), which wet and dry periods were evaluated using box-whisker plots and self-developed wavelet test. A novel expression of the Nash–Sutcliffe index for arid areas (ANSE) was considered through the calibration and validation of SWAT. Both steps were completed with 20- and 10-year discharge records of stream (1996–2015 to calibrate the model as this period depicts minimum gaps and 1985–1995 to validate it). Further, SWAT assessments were made with records of groundwater discharge and relating SWAT outputs with the SIMPA method, the Spain’s national hydrological tool. These methods, along with recurrent neural network algorithms, were utilised to examine current and predicted water resources available to supply urban demands considering also groundwater abstractions from aquifers and the related exploitation index. According to the results, SWAT achieved a “very good” statistical performance (with ANSE of 0.96 and 0.78 in calibration and validation). Spatial distributions of the main hydrological processes, as surface runoff, evapotranspiration and aquifer recharge, were studied with SWAT and SIMPA obtaining similar results over the period with registers (1980–2016). During this period, the decreasing trend of rainfalls, characterised by short wet periods and long dry periods, has generated a progressive reduction of groundwater recharge. According to algorithms prediction (until 2050), this declining trend will continue reducing groundwater available to meet urban demands and increasing the exploitation index of aquifers. These results offer valuable information to authorities for assessing water accessibility and to provide water demands in karstic areas.

Funder

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3