Affiliation:
1. Information Technology Department, Pimpri Chinchwad College of Engineering, Pune 411044, India
2. Computer Engineering Department, Pimpri Chinchwad College of Engineering, Pune 411044, India
Abstract
Billions of multimedia data files are getting created and shared on the web, mainly social media websites. The explosive increase in multimedia data, especially images and videos, has created an issue of searching and retrieving the relevant data from the archive collection. In the last few decades, the complexity of the image data has increased exponentially. Text-based image retrieval techniques do not meet the needs of the users due to the difference between image contents and text annotations associated with an image. Various methods have been proposed in recent years to tackle the problem of the semantic gap and retrieve images similar to the query specified by the user. Image retrieval based on image contents has attracted many researchers as it uses the visual content of the image such as color, texture, and shape feature. The low-level image features represent the image contents as feature vectors. The query image feature vector is compared with the dataset images feature vectors to retrieve similar images. The main aim of this article is to appraise the various image retrieval methods based on feature extraction, description, and matching content that has been presented in the last 10–15 years based on low-level feature contents and local features and proposes a promising future research direction for researchers.
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献