Affiliation:
1. College of Computer Science and Information Technology, Guangxi Normal University, Guilin 541004, China
Abstract
Variations between image pixel characteristics contain a wealth of information. Extraction of such cues can be used to describe image content. In this paper, we propose a novel descriptor, called the intensity variation descriptor (IVD), to represent variations in colour, edges, and intensity and apply it to image retrieval. The highlights of the proposed method are as follows. (1) The IVD combines the advantages of the HSV and RGB colour spaces. (2) It can simulate the lateral inhibition mechanism and orientation-selective mechanism to determine an optimal direction and spatial layout. (3) An extended weighted L1 distance metric is proposed to calculate the similarity of images. It does not require complex operations such as square or square root and leads to good performance. Comparative experiments on two Corel datasets containing 15,000 images show that the proposed method performs better than the SoC-GMM, CPV-THF, and STH methods and provides good matching of texture, colour, and shape.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献