Development of Driver-Behavior Model Based onWOA-RBM Deep Learning Network

Author:

Liu Junhui12ORCID,Jia Yajuan2,Wang Yaya2,Dolezel Petr

Affiliation:

1. The School of Electro-Mechanical Engineering, Xidian University, The Key Laboratory of Electronic Equipment and Structure Design (Xidian University), Ministry of Education, Xi’an 710071, China

2. The School of Electro Engineering, Xi’an Traffic Engineering Institute, Xi’an 710300, China

Abstract

Human drivers’ behavior, which is very difficult to model, is a very complicated stochastic system. To characterize a high-accuracy driver behavior model under different roadway geometries, the paper proposes a new algorithm of driver behavior model based on the whale optimization algorithm-restricted Boltzmann machine (WOA-RBM) method. This method establishes an objective optimization function first, which contains the training of RBM deep learning network based on the real driver behavior data. Second, the optimal training parameters of the restricted Boltzmann machine (RBM) can be obtained through the whale optimization algorithm. Finally, the well-trained model can be used to represent the human drivers’ operation effectively. The MATLAB simulation results showed that the driver model can achieve an accuracy of 90%.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3