Three Layered Architecture for Driver Behavior Analysis and Personalized Assistance with Alert Message Dissemination in 5G Envisioned Fog-IoCV

Author:

Alowish Mazen,Shiraishi YoshiakiORCID,Mohri Masami,Morii Masakatu

Abstract

The Internet of connected vehicles (IoCV) has made people more comfortable and safer while driving vehicles. This technology has made it possible to reduce road casualties; however, increased traffic and uncertainties in environments seem to be limitations to improving the safety of environments. In this paper, driver behavior is analyzed to provide personalized assistance and to alert surrounding vehicles in case of emergencies. The processes involved in this research are as follows. (i) Initially, the vehicles in an environment are clustered to reduce the complexity in analyzing a large number of vehicles. Multi-criterion-based hierarchical correlation clustering (MCB-HCC) is performed to dynamically cluster vehicles. Vehicular motion is detected by edge-assisted road side units (E-RSUs) by using an attention-based residual neural network (AttResNet). (ii) Driver behavior is analyzed based on the physiological parameters of drivers, vehicle on-board parameters, and environmental parameters, and driver behavior is classified into different classes by implementing a refined asynchronous advantage actor critic (RA3C) algorithm for assistance generation. (iii) If the driver’s current state is found to be an emergency state, an alert message is disseminated to the surrounding vehicles in that area and to the neighboring areas based on traffic flow by using jelly fish search optimization (JSO). If a neighboring area does not have a fog node, a virtual fog node is deployed by executing a constraint-based quantum entropy function to disseminate alert messages at ultra-low latency. (iv) Personalized assistance is provided to the driver based on behavior analysis to assist the driver by using a multi-attribute utility model, thereby preventing road accidents. The proposed driver behavior analysis and personalized assistance model are experimented on with the Network Simulator 3.26 tool, and performance was evaluated in terms of prediction error, number of alerts, number of risk maneuvers, accuracy, latency, energy consumption, false alarm rate, safety score, and alert-message dissemination efficiency.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3