Mixed-Level Neural Machine Translation

Author:

Nguyen Thien1ORCID,Nguyen Huu2,Tran Phuoc3ORCID

Affiliation:

1. Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. Faculty of Information Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam

3. Natural Language Processing and Knowledge Discovery Laboratory, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

Building the first Russian-Vietnamese neural machine translation system, we faced the problem of choosing a translation unit system on which source and target embeddings are based. Available homogeneous translation unit systems with the same translation unit on the source and target sides do not perfectly suit the investigated language pair. To solve the problem, in this paper, we propose a novel heterogeneous translation unit system, considering linguistic characteristics of the synthetic Russian language and the analytic Vietnamese language. Specifically, we decrease the embedding level on the source side by splitting token into subtokens and increase the embedding level on the target side by merging neighboring tokens into supertoken. The experiment results show that the proposed heterogeneous system improves over the existing best homogeneous Russian-Vietnamese translation system by 1.17 BLEU. Our approach could be applied to building translation bots for language pairs with different linguistic characteristics.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference24 articles.

1. Empirical evaluation of gated recurrent neural networks on sequence modeling;J. Chung

2. Learning phrase representations using rnn encoder–decoder for statistical machine translation;K. Cho

3. Sequence to sequence learning with neural networks;I. Sutskever;Advances in Neural Information Processing Systems,2014

4. Effective approaches to attention-based neural machine translation;M.-T. Luong

5. Edinburgh neural machine translation systems for wmt 16;R. Sennrich

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3