Improving Transformer-Based Neural Machine Translation with Prior Alignments

Author:

Nguyen Thien1ORCID,Nguyen Lam1ORCID,Tran Phuoc1ORCID,Nguyen Huu2ORCID

Affiliation:

1. Natural Language Processing and Knowledge Discovery Laboratory, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. Faculty of Information Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam

Abstract

Transformer is a neural machine translation model which revolutionizes machine translation. Compared with traditional statistical machine translation models and other neural machine translation models, the recently proposed transformer model radically and fundamentally changes machine translation with its self-attention and cross-attention mechanisms. These mechanisms effectively model token alignments between source and target sentences. It has been reported that the transformer model provides accurate posterior alignments. In this work, we empirically prove the reverse effect, showing that prior alignments help transformer models produce better translations. Experiment results on Vietnamese-English news translation task show not only the positive effect of manually annotated alignments on transformer models but also the surprising outperformance of statistically constructed alignments reinforced with the flexibility of token-type selection over manual alignments in improving transformer models. Statistically constructed word-to-lemma alignments are used to train a word-to-word transformer model. The novel hybrid transformer model improves the baseline transformer model and transformer model trained with manual alignments by 2.53 and 0.79 BLEU, respectively. In addition to BLEU score, we make limited human judgment on translation results. Strong correlation between human and machine judgment confirms our findings.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference35 articles.

1. Moses: open source toolkit for statistical machine translation;P. Koehn

2. Explicitly Modeling Word Translations in Neural Machine Translation

3. Guided alignment training for topic-aware neural machine translation;W. Chen

4. Jointly Learning to Align and Translate with Transformer Models

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3