A Fatigue Driving Detection Algorithm Based on Facial Motion Information Entropy

Author:

You Feng12,Gong Yunbo1,Tu Haiqing1,Liang Jianzhong1,Wang Haiwei3ORCID

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China

2. State Key Lab of Subtropical Building Science, South China University of Technology, Guangzhou, China

3. School of Transportation and Economic Management, Guangdong Communication Polytechnic, Guangzhou 510650, China

Abstract

Research studies on machine vision-based driver fatigue detection algorithm have improved traffic safety significantly. Generally, many algorithms asses the driving state according to limited video frames, thus resulting in some inaccuracy. We propose a real-time detection algorithm involved in information entropy. Particularly, this algorithm relies on the analysis of sufficient consecutive video frames. First, we introduce an improved YOLOv3-tiny convolutional neural network to capture the facial regions under complex driving conditions, eliminating the inaccuracy and affections caused by artificial feature extraction. Second, we construct a geometric area called Face Feature Triangle (FFT) based on the application of the Dlib toolkit as well as the landmarks and the coordinates of the facial regions; then we create a Face Feature Vector (FFV), which contains all the information of the area and centroid of each FFT. We use FFV as an indicator to determine whether the driver is in fatigue state. Finally, we design a sliding window to get the facial information entropy. Comparative experiments show that our algorithm performs better than the current ones on both accuracy and real-time performance. In simulated driving applications, the proposed algorithm detects the fatigue state at a speed of over 20 fps with an accuracy of 94.32%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3