Advancing driver fatigue detection in diverse lighting conditions for assisted driving vehicles with enhanced facial recognition technologies

Author:

Lin NingORCID,Zuo Yue

Abstract

Against the backdrop of increasingly mature intelligent driving assistance systems, effective monitoring of driver alertness during long-distance driving becomes especially crucial. This study introduces a novel method for driver fatigue detection aimed at enhancing the safety and reliability of intelligent driving assistance systems. The core of this method lies in the integration of advanced facial recognition technology using deep convolutional neural networks (CNN), particularly suited for varying lighting conditions in real-world scenarios, significantly improving the robustness of fatigue detection. Innovatively, the method incorporates emotion state analysis, providing a multi-dimensional perspective for assessing driver fatigue. It adeptly identifies subtle signs of fatigue in rapidly changing lighting and other complex environmental conditions, thereby strengthening traditional facial recognition techniques. Validation on two independent experimental datasets, specifically the Yawn and YawDDR datasets, reveals that our proposed method achieves a higher detection accuracy, with an impressive 95.3% on the YawDDR dataset, compared to 90.1% without the implementation of Algorithm 2. Additionally, our analysis highlights the method’s adaptability to varying brightness levels, improving detection accuracy by up to 0.05% in optimal lighting conditions. Such results underscore the effectiveness of our advanced data preprocessing and dynamic brightness adaptation techniques in enhancing the accuracy and computational efficiency of fatigue detection systems. These achievements not only showcase the potential application of advanced facial recognition technology combined with emotional analysis in autonomous driving systems but also pave new avenues for enhancing road safety and driver welfare.

Funder

Research and implementation of C-language mobile learning platform based on cloud technology

Research on the digital protection method of Chinese ancient architecture based on BIM

Publisher

Public Library of Science (PLoS)

Reference29 articles.

1. Comparison of fatigue related road traffic crashes on the national highways and motorways in Pakistan;K Azam;Journal of Engineering and Applied Sciences,2014

2. Real-Time Driver Fatigue Detection Based on ELM;H Liu;Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II),2016

3. The development of a driver alertness monitoring system;JH Richardson;Fatigue and Driving,2019

4. Driving tiredness–the end enemy of the driver;V Plămădeală;Journal of Engineering Sciences,2022

5. The significance of the development of road safety performance indicators related to driver fatigue;J Davidović;Transportation research procedia,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3