Affiliation:
1. Electronic Engineering Department, Sir Syed University of Engineering & Technology, Karachi 75300, Pakistan
2. Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
3. Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Abstract
The purpose of this paper is to develop a fixed-wing aircraft that has the abilities of both vertical take-off (VTOL) and a fixed-wing aircraft. To achieve this goal, a prototype of a fixed-wing gyroplane with two propellers is developed and a rotor can maneuver like a drone and also has the ability of vertical take-off and landing similar to a helicopter. This study provides guidance, navigation, and control algorithm for the gyrocopter. Firstly, this study describes the dynamics of the fixed-wing aircraft and its control inputs, i.e., throttle, blade pitch, and thrust vectors. Secondly, the inflow velocity, the forces acting on the rotor blade, and the factors affecting the rotor speed are analyzed. Afterward, the mathematical models of the rotor, dual engines, wings, and vertical and horizontal tails are presented. Later, the flight control strategy using a global processing system (GPS) module is designed. The parameters that are examined are attitude, speed, altitude, turn, and take-off control. Lastly, hardware in the loop (HWIL) based simulations proves the effectiveness and robustness of the navigation guidance and control mechanism. The simulations confirm that the proposed novel mechanism is robust and satisfies mission requirements. The gyrocopter remains stable during the whole flight and maneuvers the designated path efficiently.
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献