An Improved CEEMDAN-FE-TCN Model for Highway Traffic Flow Prediction

Author:

Gao Heyao1ORCID,Jia Hongfei1ORCID,Yang Lili1ORCID

Affiliation:

1. School of Transportation, Jilin University, 5988 Renmin Street, Changchun 130022, China

Abstract

With the advent of the data-driven era, deep learning approaches have been gradually introduced to short-term traffic flow prediction, which plays a vital role in the Intelligent Transportation System (ITS). A hybrid predicting model based on deep learning is proposed in this paper, including three steps. Firstly, an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method is applied to decompose the nonlinear time series of highway traffic flow to obtain the intrinsic mode function (IMF). The fuzzy entropy (FE) is then calculated to recombine subsequences, highlighting traffic flow dynamics in different frequencies and improving prediction efficiency. Finally, the Temporal Convolutional Network (TCN) is adopted to predict the recombined subsequences, and the final prediction result is reconstructed. Two sensors of US101-S on the main road and on-ramp were selected to measure the prediction effect. The results show that the prediction error of the proposed model on two sensors is notably decreased on single-step and multistep prediction, compared with the original TCN model. Furthermore, the proposed improved CEEMDAN-FE-X framework can be combined with prevailing prediction methods to increase the prediction accuracy, among which the improved CEEMDAN-FE-TCN model has the best performance and strong robustness.

Funder

National Natural Science Foundation Item

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3