On Study of 1D Depth Scans as an Alternative Feature for Human Pose Detection in a Sensor Network

Author:

Rasoulidanesh Maryamsadat1ORCID,Payandeh Shahram1ORCID

Affiliation:

1. Networked Robotics and Sensing Laboratory, School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

Abstract

Inspired by the notion of swarm robotics, sensing, and minimalism, in this paper, we study and analyze how a collection of only 1D depth scans can be used as a part of the minimum feature for human body detection and its segmentation in a point cloud. In relation to the traditional approaches which require a complete point cloud model representation for skeleton model reconstruction, our proposed approach offers a lower computation and power consumption, especially in sensor and robotic networks. Our main objective is to investigate if the reduced number of training data through a collection of 1D scans of a subject is related to the rate of recognition and if it can be used to accurately detect the human body and its posture. The method takes advantage of the frequency components of the depth images (here, we refer to it as a 1D scan). To coordinate a collection of these 1D scans obtained through a sensor network, we also proposed a sensor scheduling framework. The framework is evaluated using two stationary depth sensors and a mobile depth sensor. The performance of our method was analyzed through movements and posture details of a subject having two relative orientations with respect to the sensors with two classes of postures, namely, walking and standing. The novelty of the paper can be summarized in 3 main points. Firstly, unlike deep learning methods, our approach would require a smaller dataset for training. Secondly, our case studies show that the method uses very limited training dataset and still can detect the unseen situation and reasonably estimate the orientation and detail of the posture. Finally, we propose an online scheduler to improve the energy efficiency of the network sensor and minimize the number of sensors required for surveillance monitoring by employing a mobile sensor to recover the occluded views of the stationary sensors. We showed that with the training data captured on 1 m from the camera, the algorithm can detect the detailed posture of the subject from 1, 2, 3, and 4 meters away from the sensor during the walking and standing with average accuracy of 93% and for different orientation with respect to the sensor by 71% accuracy.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3