Vision-Based Three-Dimensional Reconstruction and Monitoring of Large-Scale Steel Tubular Structures

Author:

Tang Yunchao12ORCID,Chen Mingyou3,Lin Yunfan12,Huang Xueyu12,Huang Kuangyu3,He Yuxin3,Li Lijuan4ORCID

Affiliation:

1. College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

2. Academy of Smart Agricultural Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

3. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Collage of Engineering, South China Agricultural University, Guangzhou 510642, China

4. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510000, China

Abstract

A four-ocular vision system is proposed for the three-dimensional (3D) reconstruction of large-scale concrete-filled steel tube (CFST) under complex testing conditions. These measurements are vitally important for evaluating the seismic performance and 3D deformation of large-scale specimens. A four-ocular vision system is constructed to sample the large-scale CFST; then point cloud acquisition, point cloud filtering, and point cloud stitching algorithms are applied to obtain a 3D point cloud of the specimen surface. A point cloud correction algorithm based on geometric features and a deep learning algorithm are utilized, respectively, to correct the coordinates of the stitched point cloud. This enhances the vision measurement accuracy in complex environments and therefore yields a higher-accuracy 3D model for the purposes of real-time complex surface monitoring. The performance indicators of the two algorithms are evaluated on actual tasks. The cross-sectional diameters at specific heights in the reconstructed models are calculated and compared against laser rangefinder data to test the performance of the proposed algorithms. A visual tracking test on a CFST under cyclic loading shows that the reconstructed output well reflects the complex 3D surface after correction and meets the requirements for dynamic monitoring. The proposed methodology is applicable to complex environments featuring dynamic movement, mechanical vibration, and continuously changing features.

Funder

Research and Development Program of Guangdong Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3