A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics

Author:

Smith William1ORCID,Qin Yongming1ORCID,Singh Siddharth1ORCID,Burke Hudson1,Furukawa Tomonari1ORCID,Dissanayake Gamini2ORCID

Affiliation:

1. VICTOR Laboratory, University of Virginia, Charlottesville, VA 22903, USA

2. Center for Autonomous Systems, University of Technology, Sydney, NSW 2007, Australia

Abstract

High-quality maps are pertinent to performing tasks requiring precision interaction with the environment. Current challenges with creating a high-precision map come from the need for both high pose accuracy and scan accuracy, and the goal of reliable autonomous performance of the task. In this paper, we propose a multistage framework to create a high-precision map of an environment which satisfies the targeted resolution and local accuracy by an autonomous mobile robot. The proposed framework consists of three steps. Each step is intended to aid in resolving the challenges faced by conventional approaches. In order to ensure the pose estimation is performed with high accuracy, a globally accurate coarse map of the environment is created using a conventional technique such as simultaneous localization and mapping or structure from motion with bundle adjustment. The high scan accuracy is ensured by planning a path for the robot to revisit the environment while maintaining a desired distance to all occupied regions. Since the map is to be created with targeted metrics, an online path replanning and pose refinement technique is proposed to autonomously achieve the metrics without compromising the pose and scan accuracy. The proposed framework was first validated on the ability to address the current challenges associated with accuracy through parametric studies of the proposed steps. The autonomous capability of the proposed framework was been demonstrated successfully in its use for a practical mission.

Funder

US Office of Naval Research

THK Co., Ltd.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3