Affiliation:
1. Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
2. Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
3. Infectious Diseases Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Abstract
Hepatocellular carcinoma (HCC), which has become one of the most significant malignancies causing cancer-related mortality, presents genetic and phenotypic heterogeneity that makes predicting prognosis challenging. Aging-related genes have been increasingly reported as significant risk factors for many kinds of malignancies, including HCC. In this study, we comprehensively dissected the features of transcriptional aging-relevant genes in HCC from multiple perspectives. We applied public databases and self-consistent clustering analysis to classify patients into C1, C2, and C3 clusters. The C1 cluster had the shortest overall survival time and advanced pathological features. Least absolute shrinkage and selection operator (LASSO) regression analysis was adopted to build the prognostic prediction model based on six aging-related genes (HMMR, S100A9, SPP1, CYP2C9, CFHR3, and RAMP3). These genes were differently expressed in HepG2 cell lines compared with LO2 cell lines measured by the mRNA expression level. The high-risk score group had significantly more immune checkpoint genes, higher tumor immune dysfunction and exclusion score, and stronger chemotherapy response. The results indicated that the age-related genes have a close correlation with HCC prognosis and immune characteristics. Overall, the model based on six aging-associated genes demonstrated great prognostic prediction ability.
Funder
Henan Medical Science and Technology Joint Building Program
Subject
Cancer Research,Cell Biology,Molecular Medicine,General Medicine,Pathology and Forensic Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献