A Case Retrieval Strategy for Traffic Congestion Based on Cluster Analysis

Author:

Zhang Hao1ORCID,Yang Jing2

Affiliation:

1. College of Mathematics and Computer Science, Tongling University, Tongling 244000, China

2. Department of Information Engineering, Anhui Industry Polytechnic, Tongling 244000, China

Abstract

In order to improve the retrieval efficiency, this paper uses case-based reasoning (CBR) in the retrieval of traffic congestion cases and tries to adopt the strategy of clustering case databases before retrieval so as to narrow the scope of case retrieval. In terms of case clustering, the k-means algorithm, with excellent performance in text clustering, is selected to cluster traffic congestion edge cases. At the same time, considering that there is a certain similarity among the descriptions of traffic congestion, the K-means algorithm is optimized to generate an accurate clustering. Those edge cases are clustered into microcase clusters of traffic congestion and then divided into different traffic congestion categories according to the distance of cluster center. Experimental results show that the clustered case base is divided into several microcase bases, which improves the accuracy and shortens the retrieval time in the process of retrieval and provides a new idea for the retrieval method in the process of case-based reasoning.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3