Influence of Rock Strength on the Propagation of Slotted Cartridge Blasting-Induced Directional Cracks

Author:

Shu Yun12ORCID,Shao Peng12ORCID,Dong Chao12ORCID,Cao Zhen12ORCID,Yi Xinwei12ORCID

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Based on theories of explosive mechanics and rock fracture mechanics, the influence mechanism of rock strength on the propagation length of the primary crack in the directional fracture blasting with slotted cartridge has been investigated deeply to propose the relation equation between the rock strength and the propagation length of the primary crack. Theoretically, the maximum length am of the primary crack increases with the enhancing rock strength parameters. The explicit dynamic analysis software LS-DYNA has been used to simulate the slotted cartridge blasting in the mudstone, sandstone, and granite with different strengths in order to reveal the effect of rock strength on the propagation length and velocity of the primary crack and the stress distribution characteristics in rock. The numerical results show the primary crack easily bifurcates and attain a much shorter propagation length in the mudstone with the minimum strength, and there are radial cracks appearing in the nonslotted direction. When rock strength rises, the propagation length, velocity, and duration of the primary crack and the concentration degree of effective stress in the slotted direction will all increase in the sandstone and granite, but there is an opposite influence trend of rock strength in the stage of the initial guide crack’s formation. The cracking velocity has an overall oscillation downtrend whose swing amplitude enhances clearly with the increasing rock strength, signifying the more unsteady propagation of the primary crack in the higher strength rock.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3