Research on directional rock blasting based on different slotted pipe materials of the combined charge structure

Author:

Wu Lianhua,Zhang Yiping,Hou Tianliang,Liu Kaixin,Miao Yusong,Li Jie,Zhao Xin,Zhang Mei

Abstract

AbstractFor shaped charge blasting projects in mining, civil engineering, and similar fields, it is proposed to modify the charge structure by combining slotted tubes and shaped charge liners to obtain a new type of charge structure. This aims to achieve directional rock breaking through the focused action of the shaped charge. The influence of different slotted pipe materials on the directional rock-breaking effect of concentrated energy using a new charge structure is explored through theoretical analysis combined with model test study, high-speed camera, stress–strain gauge, and other equipment. A comparison is made between slotted pipes made of aluminum, kraft paper, and PVC, with the cutting width of 2 mm. Based on the characteristics of the cracks formed after blasting, the new charge structure made of aluminum slotted pipe produces a penetrating crack that is almost consistent with the pre-cracking direction. Based on the corresponding characteristics of successively released blasting energy, the guiding and convergence effect of the new charge structure made of aluminum slotted pipe on the explosion energy is greater than that of the new charge structure made of the other two types of slotted pipe material. According to the strain data measured after blasting, the peak arrival time of the strain peak in the direction of the slotted pipe on one side of the shaped hood is shorter than that in the other two directions, and the peak strain is greater than that in the other two directions while having a better energy gathering effect. Based on the findings, the new charge structure with directional energy concentration has a damage reduction effect. Furthermore, the material of aluminum slotted pipe is found to be better than PVC slotted pipe, whereas the material of PVC slotted pipe is better than kraft paper slotted pipe in achieving directional rock breaking.

Funder

National Natural Science Foundation of China Funding projects

Guizhou Provincial Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3