Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

Author:

Wu Han1ORCID,Qu Shizhen1,Xu Dongdong1,Chen Chunlin1ORCID

Affiliation:

1. Department of Control and System Engineering, School of Management and Engineering, Nanjing University, Nanjing 210093, China

Abstract

Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR) with wireless sensor network- (WSN-) based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication) global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Flying Robot Swarm Formation Technique Based on Adaptive Wireless Communication using MUSIC Algorithm;International Journal of Electrical and Electronics Research;2024-06-28

2. Mixed-Reality Based Multi-Agent Robotics Framework for Artificial Swarm Intelligence Experiments;IEEE Access;2023

3. Closed-Loop Motion Control of Robotic Swarms – A Tether-Based Strategy;IEEE Transactions on Robotics;2022-12

4. Precise Coordinated Localization for Swarm Robots via Multidimensional Scaling and Wireless Sensor Networks;2021 IEEE International Conference on Networking, Sensing and Control (ICNSC);2021-12-03

5. An Ants Swarm Control Ontology for Simulated Packet Switching;2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC);2021-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3